
An AO* Algorithm for Planning with Continuous Resources
Emmanuel Benazera

Ronen Brafman
Nicolas Meuleau

NASA Ames Research Center
Mail Stop 269-3

Moffet Field, CA 94035-1000
{ebenazer, brafman, nmeuleau}

@email.arc.nasa.gov

Mausam
Department of Computer Science

and Engineering
University of Washington, Seattle

Seattle, WA 981952350
mausam@cs.washington.edu

Eric Hansen
Computer Science Department
Mississippi State University
Mississippi State, MS 39762

hansen@cs.msstate.edu

Abstract

We consider the problem of optimal planning in stochastic
domains with metric resource constraints. Our goal is to gen-
erate a policy whose expected sum of rewards is maximized
for a given initial state. We consider a general formulation
motivated by our application domain – planetary exploration
– in which the choice of an action at each step may depend on
the current resource levels. We adapt the forward search al-
gorithm AO* to handle our continuous state space efficiently,
as demonstrated by our experimental results.

Introduction
There are many problems inherent in communication with
remote devices such as planet exploratory rovers (Bresina
et al. 2002). Therefore, remote rovers must operate au-
tonomously over substantial periods of time. Moreover, the
surfaces of planets are very uncertain environments: thereis
a great deal of uncertainty in the duration, energy consump-
tion, and outcome of a rover’s actions. Currently, instruc-
tions sent to planetary rovers are in the form of a simple plan
for attaining a single goal (e.g., photographing some inter-
esting rock). The rover attempts to carry this out, and when
done remains idle. If it fails early on, it makes no attempt to
recover and possibly achieve an alternative goal. This may
have serious impact on missions. For instance, it has been
estimated that the 1997 Mars Pathfinder rover spent between
40% and 75% of its time doing nothing because plans did not
execute as expected. Finally, MER rovers (aka Spirit and
Opportunity) require an average of 3 days to visit a single
rock. However, multiple rock visits in a single communica-
tion cycle will be possible in future missions (Pedersenet
al. 2005). Then, it is believed that the expectations of space
scientists will increase dramatically and that rovers willend
up highly oversubscribed.

Working in this application domain, our goal is to pro-
vide a planning algorithm that can generate a reliable con-
tingent plan that can respond to different events and action
outcomes. This plan must optimize the expected value of the
experiments conducted by the rover, while being aware of its
time, energy, and memory constraints. In particular, we must
pay attention to the fact that given any initial state, thereare
many experiments the rover could conduct,most combina-
tions of whichare infeasible due to resource constraints. To
address this problem we need a faithful model of the rover’s

domain and an algorithm that is able to generate optimal or
near-optimal plans for such domains. General features of
our problem include: (1) concrete starting state; (2) continu-
ous resources (including time) with stochastic consumption;
(3) uncertain action effects; (4) several possible one-time-
rewards, only a subset of which are achievable. This type
of problem is of general interest, as it fits a large class of
(stochastic) logistics problems, and many more.

Past work has dealt with various variants of this prob-
lem. Related work on MDPs with resource constraints in-
cludes the model of constrained MDPs developed in the
OR community (Altman 1999). In this model, a linear
program includes constraints on resource consumption and
is used to find the best feasible policy, given an initial
state and resource allocation. But a drawback of the con-
strained MDP model is that it does not include resources
in the state space, and thus a policy cannot be conditioned
on resource availability. Moreover, resource consump-
tion is modeled as deterministic. In the area of decision-
theoretic planning, several techniques have been proposed
to handle uncertain continuous variables (e.g. (Fenget al.
2004; Younes and Simmons 2004)). Finally, (Smith 2004;
van den Brielet al. 2004) considered the problem of over-
subscription planning, i.e., planning with a large set of goals
which is not entirely achievable. They provide techniques
for selecting a subset of goals for which to plan, but they
deal only with deterministic domains. Finally, (Meuleauet
al. 2004) depicts preliminary experiments towards scaling
up decision theoretic approaches to planetary rovers prob-
lem.

Our main contribution is an implemented algorithm that
handles all of these problems together: oversubscription
planning, uncertainty, and limited continuous resources.
Our approach is to include resources in the state descrip-
tion. This allows decisions to be made based on resource
availability, and it allows a stochastic resource consump-
tion model (as opposed to constrained MDPs). Although
this increases the size of the state space, we assume that the
value functions may be represented compactly and we use
the work of Feng et al. (2004) on piecewise constant and
linear approximations of dynamic programming (DP) in our
implementation. However, standard DP does not exploit the
fact that the reachable state space is much smaller than the
complete state space, especially in the presence of resource

constraints. Our contribution in this paper is to show how to
use the forward heuristic search algorithm called AO* (Pearl
1984; Hansen and Zilberstein 2001) to solve MDPs with re-
source constraints and continuous resource variables. Un-
like DP, forward search keeps track of the trajectory from
the start state to each reachable state, and thus it can check
whether the trajectory is feasible or violates a resource con-
straint. This allows heuristic search to prune infeasible tra-
jectories and can dramatically reduce the number of states
that must be considered to find an optimal policy. This is
particularly important in our domain where the discrete state
space is huge (exponential in the number of goals), yet the
portion reachable from any initial state is relatively small
because of the resource constraints. It is well-known that
heuristic search can be more efficient than DP because it
leverages a search heuristic and reachability constraintsto
focus computation on the relevant parts of the state space.
We show that for problems with resource constraints, this
advantage can be even greater than usual because resource
constraints further limit reachability.

The paper is structured as follows: In Section 2 we de-
scribe the basic action and goal model we work with. In
Section 3 we explain our planning algorithm. Initial exper-
imental results are described in Section 4, and we conclude
in Section 5.

Problem Definition and Solution Approach
Problem Formulation
We consider a Markov decision process (MDP) with both
continuous and discrete state variables (also known asGen-
eralized State MDP(Younes and Simmons 2004)). Each
state corresponds to an assignment to a set of state variables.
These variables may be discrete or continuous. Continuous
variables typically represent resources, where one possible
type of resource is time. Discrete variables model other as-
pects of the state, including (in our application) the set of
goals achieved so far by the rover. (Keeping track of already-
achieved goals ensures a Markovian reward structure, since
we reward achievement of a goal only if it was not achieved
in the past.) Although our models typically contain multiple
discrete variables, this plays no role in the description ofour
algorithm, and so, for notational convenience, we model the
discrete component as a single variablen.

A Markov states ∈ S is a pair(n,x) wheren ∈ N is
the discrete variable, andx = (xi) is a vector of continuous
variables. The domain of eachxi is an intervalXi of the real
line, andX =

⊗

i Xi is the hypercube over which the con-
tinuous variables are defined. We assume an explicitinitial
state, denoted(n0,x0), and one or more absorbingtermi-
nal states. One terminal state corresponds to the situation in
which all goals have been achieved. Others model situations
in which resources have been exhausted or an action has re-
sulted in some error condition that requires executing a safe
sequence by the rover and terminating plan execution.

Actionscan have executability constraints. For example,
an action cannot be executed in a state that does not have
its minimal resource requirements.An(x) denotes the set of
actions executable in state(n,x).

State transition probabilitiesare given by the function
Pr(s′ | s, a), wheres = (n,x) denotes the state before
actiona ands′ = (n′,x′) denotes the state after actiona,
also called the arrival state. Following (Fenget al. 2004),
the probabilities are decomposed into:

• the discrete marginalsPr(n′|n,x, a). For all (n,x, a),
∑

n′∈N Pr(n′|n,x, a) = 1;

• the continuous conditionalsPr(x′|n,x, a, n′). For all
(n,x, a, n′),

∫

x′∈X
Pr(x′|n,x, a, n′)dx′ = 1.

Any transition that results in negative value for some contin-
uous variable is viewed as a transition into a terminal state.

The reward of a transition is a function of the arrival
state only. More complex dependencies are possible, but
this is sufficient for our goal-based domain models. We let
Rn(x) ≥ 0 denote therewardassociated with a transition to
state(n,x).

In our application domain, continuous variables model
non-replenishable resources. This translates into the gen-
eral assumption that the value of the continuous variables is
non-increasing. Moreover, We also assume that each action
has some minimal positive consumption of at least one re-
source. We do not utilize this assumption directly. However,
it has two implications upon which the correctness of our ap-
proach depends: (1) the values of the continuous variables
are a-priori bounded, and (2) the number of possible steps
in any execution of a plan is bounded, which we refer to by
saying the problem has abounded horizon. Note that the
actual number of steps until termination can vary depending
on actual resource consumption.

Given an initial state(n0,x0), the objective is to find a
policy that maximizes expected cumulative reward.1 In
our application, this is equal to the sum of the rewards for
the goals achieved before running out of a resource. Note
that there is no direct incentive to save resources: an opti-
mal solution would save resources only if this allows achiev-
ing more goals. Therefore, we stay in a standard decision-
theoretic framework. This problem is solved by solving
Bellman’s optimality equation, which takes the following
form:

V 0
n (x) = 0 ,

V t+1
n (x) = max

a∈An(x)

[

∑

n′∈N

Pr(n′ |, n,x, a)

∫

x′

Pr(x′ | n,x, a, n′)
(

Rn′(x′) + V t
n′ (x′)

)

dx′

]

.

(1)

Note that the indext represents the iteration ortime-stepof
DP, and does not necessarily correspond to time in the plan-
ning problem. The duration of actions is one of the biggest
source of uncertainty in our rover problems, and we typi-
cally model time as one of the continuous resourcesxi.

Solution Approach
Feng et al. (2004) describe a dynamic programming (DP)
algorithm that solves this Bellman optimality equation. In

1Our algorithm can easily be extended to deal with an uncertain
starting state, as long as its probability distribution is known.

particular, they show that the continuous integral overx
′ can

be computed exactly, as long as the transition function satis-
fies certain conditions. We defer a discussion of the details
of their approach until the end of Section 3, and treat this
computation as a black-box for now. This allows us to sim-
plify the description of our algorithm in the next section and
focus on our contribution.

The difficulty we address in this paper is the poten-
tially huge size of the state space, which makes DP in-
feasible. One reason for this size is the existence of con-
tinuous variables. But even if we only consider the dis-
crete component of the state space, the size of the state
space is exponential in the number of propositional vari-
ables comprising the discrete component. To address this
issue, we use forward heuristic search in the form of a
novel variant of the AO* algorithm. Recall that AO* is
an algorithm for searching AND/OR graphs (Pearl 1984;
Hansen and Zilberstein 2001). Such graphs arise in prob-
lems where there are choices (the OR components), and each
choice can have multiple consequences (the AND compo-
nent), as is the case in planning under uncertainty. AO* can
be very effective in solving such planning problems when
there is a large state space. One reason for this is that AO*
only considers states that are reachable from an initial state.
Another reason is that given an informative heuristic func-
tion, AO* focuses on states that are reachable in the course
of executing a good plan. As a result, AO* often finds an
optimal plan by exploring a small fraction of the entire state
space.

The challenge we face in applying AO* to this problem is
the challenge of performing state-space search in a contin-
uous state space. Our solution is to search in anaggregate
state spacethat is represented by a search graph in which
there is a node for each distinct value of the discrete com-
ponent of the state, and each node corresponds to the con-
tinuous region of the state space for which the value of the
discrete component is the same. In other words, the implicit
search graph for our search problem has one node for each
distinct value of the discrete variable(s), and each node rep-
resents the region of the continuous state space in which the
discrete value is the same. In this approach, different ac-
tions may be optimal for different Markov states in the ag-
gregate state associated with a search node, especially since
the best action is likely to depend on how much energy or
time is remaining. To address this problem and still find an
optimal solution, we associate a value estimate with each of
the Markov states in an aggregate. Following the approach
of (Fenget al. 2004), this value function can be represented
and computed efficiently due to the continuous nature of
these states and the simplifying assumptions made about the
transition functions. Using these value estimates, we can as-
sociate different actions with different Markov states within
the aggregate state corresponding to a search node.

In order to select which node on the fringe of the search
graph to expand, we also need to associate a heuristic value
with each search node. Thus, we maintain both a value func-
tion for Markov states (which is used to make action selec-
tions) and a heuristic estimate for each search node or ag-
gregate state (which is used to decide which search node to

expand next). Details are given in the following section.
We note that LAO*, a generalization of AO*, allows for

policies that contain “loops” in order to specify behavior
over an infinite horizon (Hansen and Zilberstein 2001). We
could use similar ideas to extend LAO* to our setting. How-
ever, we need not consider loops for two reasons: (1) our
problems have a bounded horizon; (2) an optimal policy
will not contain any intentional loop because returning to
the same discrete state with fewer resources cannot buy us
anything. Our current implementation assumes any loop is
intentional and discards actions that create such a loop.

The Algorithm
A simple way of understanding our algorithm is as an AO*
variant where states with identical discrete component are
expanded in unison. The algorithm works with two graphs:

• Theexplicit graphdescribes all the states that have been
expanded so far and the AND/OR edges that connect
them. The nodes of the explicit graph are stored in two
lists: OPEN and CLOSED.

• The greedy policy(or partial solution) graph, denoted
GREEDY in the algorithms, is a sub-graph of the explicit
graph describing the current optimal policy.

In standard AO*, a single action will be associated with each
node in the greedy graph. However, as described before,
multiple actions can be associated with each node, because
different actions may be optimal for different Markov states
represented by an aggregate state.

Data Structures
The main data structure represents a search noden. It con-
tains:

• The value of the discrete state. In our application these
are the discrete state variables and set of goals achieved.

• Pointers to its parents and children in the explicit and
greedy policy graphs, as pairs(n′, a), wheren′ is a par-
ent/child node, anda is an action that allows this transi-
tion.

• Pn(·) – a probability distribution on the continuous vari-
ables in noden. For eachx ∈ X, Pn(x) is an estimate of
the probability density of passing through state(n,x) un-
der the current greedy policy. It is obtained byprogress-
ing the initial state forward through the optimal actions of
the greedy policy. With eachPn, we maintain the proba-
bility of passing throughn under the greedy policy:

M(Pn) =

∫

x∈X

Pn(x)dx .

• Hn(·) – the heuristic function. For eachx ∈ X, Hn(x) is
a heuristic estimate of the optimal expected reward from
state(n,x). The heuristic functionsH are obtained by
solving a relaxed problem. An admissible heuristic is ob-
tained by assuming that all action consumptions take their
smallest possible value in each dimension with probabil-
ity 1. See the end of this Section for the discussion of the
heuristics.

• Vn(·) – the value function. At the leaf nodes of the ex-
plicit graph,Vn = Hn. At the non-leaf nodes of the ex-
plicit graph,Vn is obtained by backing up theH functions
from the descendant leaves. If the heuristic functionHn′

is admissible in all leaf nodesn′, thenVn(x) is an upper
bound on the optimal reward to come from(n,x) for all
x reachable under the greedy policy.

• gn – a heuristic estimate of the increase in value of the
greedy policy that we would get by expanding noden.
If Hn is admissible thengn represents an upper bound
on the gain in expected reward. The gaingn is used to
determine the priority of nodes in the OPEN list (gn = 0
if n is in CLOSED), and to bound the error of the greedy
solution at each iteration of the algorithm.

Note that some of this information is redundant. Never-
theless, it is convenient to maintain all of it so that the algo-
rithm can easily access it. The algorithm uses the customary
OPEN and CLOSED lists maintained by AO*. They encode
the explicit graph and the current greedy policy. CLOSED
contains expanded nodes, and OPEN contains unexpanded
nodes and nodes that need to be re-expanded.

Algorithm
Algorithm 1 presents the main procedure. The crucial steps
are described in detail below.

Expanding a node (lines 10 to 20): At each iteration,
the algorithm expands the open noden with the highest pri-
ority gn in the greedy graph. Note that standard AO* ex-
pands only tip nodes, whereas in our algorithm a previously
expanded node can be put back in OPEN (line23). There-
fore, the expanded node can be “in the middle of” the greedy
policy subgraph. The algorithm then considers all possible
successors(a, n′) of n given the state distributionPn. Typ-
ically, whenn is expanded for the first time, we enumerate
all actionsa possible in(n,x) (a ∈ An(x)) for some reach-
ablex (Pn(x) > 0), and all arrival statesn′ that can result
from such a transition (Pr(n′ | n,x, a) > 0).2 If n′ was pre-
viously expanded (i.e. it has been put back in OPEN), only
actions and arrival nodes not yet expanded are considered.
In line 11, we check whether a node has already been gen-
erated. This is not necessary if the graph is a tree (i.e., there
is only one way to get to each discrete state).3 In line 15, a
noden′ is terminal if no action is executable in it (because
of lack of resources). In our application domain each goal
pays only once, thus the nodes in which all goals of the prob-
lem have been achieved are also terminal. Finally, the test in
line 19 prevents loops in the explicit graph, as discussed in
section .

Putting a node from CLOSED back in OPEN when it is
regenerated is not a feature of standard AO* as described

2We assume that performing an action in a state where it is not
allowed is an error that ends execution with zero or constantre-
ward.

3Sometimes it is beneficial to use the tree implementation of
AO* when the problem graph isalmosta tree, by duplicating nodes
that represents the same (discrete) state reached through different
paths.

1: Create the root noden0 which represents the initial
state.

2: Pn0
= initial distribution on resources.

3: Vn0
= 0 everywhere inX.

4: gn0
= 0.

5: OPEN= {n0}.
6: CLOSED= GREEDY= ∅.
7: while OPEN∩ GREEDY 6= ∅ do
8: n = arg maxn′∈OPEN∩GREEDY(gn′).
9: Moven from OPEN to CLOSED.

10: for all (a, n′) ∈ A × N not expanded yet inn and
reachable underPn do

11: if n′ /∈ OPEN ∪ CLOSED then
12: Create the data structure to representn′ and add

the transition(n, a, n′) to the explicit graph.
13: GetHn′ .
14: Vn′ = Hn′ everywhere inX.
15: if n′ is terminal:then
16: · Add n′ to CLOSED.
17: else
18: · Add n′ to OPEN.
19: else if n′ is not an ancestor ofn in the explicit

graphthen
20: Add the transition (n, a, n′) to the explicit

graph.
21: if some pair(a, n′) was expanded at previous step

(10) then
22: UpdateVn for the expanded noden and some of its

ancestors in the explicit graph, with Algorithm 2.
23: UpdatePn′ andgn′ using Algorithm 3 for the nodes

n′ that are children of the expanded node or of a node
where the optimal decision changed at the previous
step (22). Move every noden′ ∈ CLOSED whereP
changed back into OPEN.

Algorithm 1: AO* algorithm for hybrid domains.

in (Pearl 1984). We need this feature because each search
node represents several Markov states: when we find a
new path to an existing node, we might have reached some
Markov states that were not considered in the explicit graph
before, and so these states need to be expanded. In other
words, when we find a new path ton′, the state distribution
in Pn′ may need to be updated (line 23) and actions that
were not possible inn′ before may become applicable. Sim-
ilarly, new (discrete) nodes may also become possible. This
is illustrated on Figure 1.

Updating the value functions (line 22): As in standard
AO*, the value of a newly expanded node must be updated.
This consists of recomputing its value function with Bell-
man’s equations (Eqn. 1), based on the value functions of
all children ofn in the explicit graph. This computation is
discussed at the end of this Section. Note that these backups
involve all continuous statesx ∈ X for each node,not just
the reachable values ofx. However, they consider only ac-
tions and arrival nodes that are reachable according toPn.
Once the value of a state is updated, its new value must

x

Vn

Pn

xn’

n

a0
a1

a2

n’’

(a) Solid lines represent the GREEDY graph. Actions
are represented withk-connectors, e.g.a0 has three out-
comes. Here,n is first expanded witha2. n

′′ is in the
fringe.

x

a4
a3

Vn

Pn

x

n

a0
a1

a2

n’

n’’

(b) Thenn
′′ gets expanded anda3 leads ton with some

unexplored Markov states soPn is updated. n is now
back into OPEN, and eventually gets re-expanded: action
a4 can apply, andVn is updated, and so is the GREEDY
graph.

Figure 1: Node re-expansion.

be propagated backward in the explicit graph. The back-
ward propagation stops at nodes where the value function is
not modified, and/or at the root node. The whole process is
performed by applying Algorithm 2 to the newly expanded
node.

1: Z = {n} //n the newly expanded node.
2: while Z 6= ∅ do
3: Choose a noden′ ∈ Z that has no descendant inZ.
4: Removen′ from Z.
5: UpdateVn′ following Eqn. 1.
6: if Vn′ was modified at the previous stepthen
7: Add all parents ofn′ in the explicit graph toZ.
8: if optimal decision changes for some(n′,x),

Pn′(x) > 0 then
9: Update the greedy subgraph (GREEDY) atn′ if

necessary.
10: Mark n′ for use at line23 of Algorithm1.

Algorithm 2: Updating the value functionsVn.

Updating the state distributions (line 23): Pn’s repre-
sent the state distributionunder the greedy policy, and they
need to be updated after recomputing the greedy policy.
More precisely,P needs to be updated in each descendant
of a node where the optimal decision changed. To update
a noden, we consider all its parentsn′ in the greedy policy
graph, and all the actionsa that can lead from one of the par-
ents ton. The probability of getting ton is the sum over all
(n′, a) of the probability of arriving fromn′ undera, which
is obtained by convolvingPn′ and the transition probability

of a:

Pn(x) =
∑

(n′,a)∈Ωn

Pr(n | n′,x′, a)

∫

x′

Pn′(x′) Pr(x | n′,x′, a, n)dx′ . (2)

Note that it is sufficient to consider only pairs(n′, a) where
a is the greedy action inn′ for some reachable resource
level:

Ωn = {(n′, a) ∈ N × A : ∃x ∈ X,

Pn′(x) > 0, µ∗

n′(x) = a, Pr(n | n′,x, a) > 0} ,

whereµ∗

n(x) ∈ A is the greedy action in(n,x). Note that
this operation may induce a loss of total probability mass
(Pn <

∑

n′ Pn′) because we can run out of a resource dur-
ing the transition and end up in a sink state. When the dis-
tribution Pn of a noden in the OPEN list is updated, its
priority gn is recomputed using the following equation (the
priority of nodes in CLOSED is maintained as 0):

gn =

∫

x∈S(Pn)−Xold
n

Pn(x)Hn(x)dx ; (3)

where S(P) is the support of P : S(P) =
{x ∈ X : P (x) > 0}, and X

old
n contains all x ∈ X

such that the state(n,x) has already been expanded before
(Xold

n = ∅ if n has never been expanded). The techniques
used to represent the continuous probability distributionsPn

and compute the continuous integrals are discussed in the
next sub-section. Algorithm3 presents the state distributions
updates. It applies to the set of nodes where the greedy
decision changed during value updates (including the newly
expanded node, i.e.n in Algorithm1).

Handling Continuous Variables
Computationally, the most challenging aspect of the algo-
rithm is the handling of continuous state variables, and par-

1: Z = children of nodes where the optimal decision
changed when updating value functions in Algorithm1.

2: while Z 6= ∅ do
3: Choose a noden ∈ Z that has no ancestor inZ.
4: Removen from Z.
5: UpdatePn following Eqn. 2.
6: if Pn was modified at step5 then
7: Moven from CLOSED to OPEN.
8: Update the greedy subgraph (GREEDY) atn if

necessary.
9: Updategn following Eqn. 3.

Algorithm 3: Updating the state distributionsPn.

ticularly the computation of the continuous integral in Bell-
man backups and Eqns. 2 and 3. We approach this prob-
lem using the ideas developed in (Fenget al. 2004) for the
same application domain. However, we note that our algo-
rithm could also be used with other models of uncertainty
and continuous variables, as long as the value functions can
be computed exactly in finite time. The approach of (Feng
et al. 2004) exploits the structure in the continuous value
functions of the type of problems we are addressing. These
value functions typically appear as collections of humps and
plateaus, each of which corresponds to a region in the state
space where similar goals are pursued by the optimal policy.
(see Fig. 3). The sharpness of the hump or the edge of a
plateau reflects uncertainty of achieving these goals. Con-
straints imposing minimal resource levels before attempting
risky actions introduce sharp cuts in the regions. Such struc-
ture is exploited by grouping states that belong to the same
plateau, while reserving a fine discretization for the regions
of the state space where it is the most useful (such as the
edges of plateaus).

To adapt the approach of (Fenget al. 2004), we make
some assumptions that imply that our value functions can
be represented as piece-wise constant or linear. Specifically,
we assume that the continuous state space induced by every
discrete state can be divided into hyper-rectangles in each
of which the following holds: (i) The same actions are ap-
plicable. (ii) The reward function is piece-wise constant or
linear. (iii) The distribution of discrete effects of each action
are identical. (iv) The set of arrival values or value varia-
tions for the continuous variables is discrete and constant.
Assumptions (i-iii) follow from the hypotheses made in our
domain models. Assumption (iv) comes down to discretiz-
ing the actions resource consumptions, which is an approxi-
mation. It contrasts with the naive approach that consists of
discretizing the state space regardless of the relevance ofthe
partition introduced. Instead, we discretize the action out-
comes first, and then deduce a partition of the state space
from it. The state-space partition is kept as coarse as possi-
ble, so that only the relevant distinctions between (continu-
ous) states are taken into account. Given the above condi-
tions, it can be shown (see (Fenget al. 2004)) that for any
finite horizon, for any discrete state, there exists a partition
of the continuous space into hyper-rectangles over which the
optimal value function is piece-wise constant or linear. The

implementation represents the value functions as kd-trees,
using a fast algorithm to intersect kd-trees (Friedmanet al.
1977), and merging adjacent pieces of the value function
based on their value. We augmented this approach by rep-
resenting the continuous state distributionsPn as piecewise
constant functions of the continuous variables. Under the
set of hypotheses above, if the initial probability distribution
on the continuous variables is piecewise constant, then the
probability distribution after any finite number of actionsis,
too, and Eqn. 2 may always be computed in finite time.4

Properties
As for standard AO*, it can be shown that if the heuristic
functionsHn are admissible (optimistic), andif the contin-
uous backups are computed exactly, then: (i) at each step
of the algorithm,Vn(x) is an upper-bound on the optimal
expected return in(n,x), for all (n,x) expanded by the
algorithm; (ii) the algorithm terminates after a finite num-
ber of iterations; (iii) after termination,Vn(x) is equal to
the optimal expected return in(n,x), for all (n,x) reach-
able under the greedy policy (Pn(x) > 0). Moreover, if
we assume that, in each state, there is adoneaction that
terminates execution with zero reward (in a rover problem,
we would then start a safe sequence), then we can evaluate
the greedy policy at each step of the algorithm by assum-
ing that execution ends each time we reach a leaf of the
greedy subgraph. Under the same hypotheses, the error of
the greedy policy at each step of the algorithm is bounded by
∑

n∈GREEDY∩OPEN gn. This property allows trading com-
putation time for accuracy by stopping the algorithm early.

Heuristic Functions
The heuristic functionHn help focus the search on truly use-
ful reachable states. It is essential for tackling real-size prob-
lems. Our heuristic function is obtained by solving a relaxed
problem. The relaxation is very simple: we assume that
deterministic transitions for the continuous variables, i.e.,
Pr(x′|n,x, a, n′) ∈ {0, 1}. If we assume the action con-
sumes the minimal amount of each resource, we obtain an
admissible heuristic function. A non-admissible, but proba-
bly more informative heuristic function is obtained by using
the mean resource consumption.

The central idea is to usethe same algorithmto solve both
the relaxed and the original problem. Unlike classical ap-
proaches where a relaxed plan is generated for every search
state, we generate a “relaxed” search-graph using our AO*
algorithmoncewith a deterministic-consumption model and
a trivial heuristic. The value functionVn of a node in the
relaxed graph represents the heuristic functionHn of the as-
sociated node in the original problem graph. Solving the
relaxed problem with our regular algorithm is considerably
easier, because the structure and the updates of the value
functionsVn and of the probabilitiesPn are much simpler
than in the original domain. However, we run into the fol-
lowing problem: deterministic consumption implies that the
number of reachable states for any given initial state is very

4A deterministic starting statex0 is represented by a uniform
distribution with very small rectangular support centeredin x0.

small (because only one continuous assignment is possible).
This means that in a single expansion, we obtain information
about a small number of states. To address this problem, in-
stead of starting with the initial resource values, we assume
a uniform distribution over the possible range of resource
values. Because it is relatively easy to work with a uniform
distribution, the computation is simple relative to the real
problem, but we obtain an estimate for many more states. It
is still likely that we reach states for which no heuristic es-
timate was obtained using these initial values. In that case,
we simply recompute starting with this initial state.

Experimental Evaluation
We tested our algorithm on a slightly simplified variant of
the rover model used for NASA Ames October 2004 IS
demo (Pedersenet al. 2005). In this domain, a planetary
rover moves in a planar graph made of locations and paths,
sets up instruments at different rocks, and performs experi-
ments on the rocks. Actions may fail, and their energy and
time consumption are uncertain. Resource consumptions are
drawn from two type of distributions: uniform and normal,
and then discretized.

The results presented here were obtained using a prelim-
inary implementation of the piecewise constant DP approx-
imations described in (Fenget al. 2004) based on a flat
representation of state partitions instead of kd-trees. This
is considerably slower than an optimal implementation. To
compensate, our domain features a single abstract contin-
uous resource, while the original domain contains two re-
sources (time and energy). Another difference in our imple-
mentation is in the number of nodes expanded at each itera-
tion. We adapt the findings of (Hansen and Zilberstein 2001)
that overall convergence speeds up if all the nodes in OPEN
are expanded at once, instead of prioritizing them based on
gn values and changing the value functions after each ex-
pansion. Finally, these preliminary experiments do not use
the sophisticated heuristics presented earlier, but the follow-
ing simple admissible heuristic:Hn is the constant function
equal to the sum of the utilities of all the goals not achieved
in n.

The problem instance used in our preliminary experi-
ments is illustrated in figure 2. It contains 5 target rocks (T1
to T5) to be tested. Different targets can be lost/re-acquired
when navigating on a path: these changes are modeled as
action effects in the discrete state. Overall, the problem con-
tains 43 propositional state variables, 37 actions. Therefore,
there are248 different discrete states, which is far beyond
the reach of a flat DP algorithm.

We varied the initial amount of resource available to the
rover. As available resource increases, more nodes are
reachable and more reward can be gained. The performance
of the algorithm is presented in Table 1. We see that the
number of reachable discrete states is much smaller than the
total number of states (248) and the number of nodes in an
optimal policy is surprisingly small. This indicates that AO*
is particularly well suited to our rover problems. However,
the number of nodes expanded is quite close to the number
of reachable discrete states. Thus, our current simple heuris-
tic is only slightly effective in reducing the search space,

Re−acquire T4

L1

L2

L3

L4

T1(5)

T2(10)

T5(15)

T3 (10)

T4 (15)

[20,30]

[20,30]

[15,18]

[15,20]

Lose T4

Lose T2, T5

Lose T1

Figure 2: Case study: the rover navigates around five tar-
get rocks (T1 to T5). The number with each rock is the
reward received on testing that rock. Consumption of the re-
source in the navigate actions follows a uniform distribution
paremetrized with the numbers on each edge. The total re-
source consumed by all the actions needed in testing a rock
is between 20 to 40 units.

and reachability makes the largest difference. This suggests
that much progress can be obtained by using better heuris-
tics. The last column measures the total number of reachable
Markov states, after discretizing the action consumptionsas
in (Fenget al. 2004). This is the space that a forward search
algorithm manipulating Markov states, instead of discrete
states, would have to tackle. In most cases, it would be im-
possible to explore such space with poor quality heuristics
such as ours. This indicates that our algorithm is quite ef-
fective in scaling up to very large problems by exploiting
the structure presented by continuous resources.

 0

 5

 10

 15

 20

 25

 30

 35

 0 20 40 60 80 100 120 140

E
xp

ec
te

d
ut

ili
ty

Initial resource

Figure 3: Value function of the initial state.

Figure 3 shows the converged value function of the initial
state of the problem. The value function comprises several
plateaus where different set of goals are achieved. For exam-
ple, the first plateau until resource is equal to 23 represents
that the resource is insufficient for any goal to be achieved.

A B C D E F G H

30 0.1 39 39 38 9 1 239

40 0.4 176 163 159 9 1 1378

50 1.8 475 456 442 12 1 4855

60 7.6 930 909 860 32 2 12888

70 13.4 1548 1399 1263 22 2 25205

80 32.4 2293 2148 2004 33 2 42853

90 87.3 3127 3020 2840 32 2 65252

100 119.4 4673 4139 3737 17 2 102689

110 151.0 6594 5983 5446 69 3 155733

120 213.3 12564 11284 9237 39 3 268962

130 423.2 19470 17684 14341 41 3 445107

140 843.1 28828 27946 24227 22 3 17113

150 1318.9 36504 36001 32997 22 3 1055056

Table 1: Performance of the algorithm for different initial
resource levels. A: initial resource (abstract unit). B: exe-
cution time (s). C: # reachable discrete states. D: # nodes
created by AO*. E: # nodes expanded by AO*. F: # nodes in
the optimal policy graph. G: # goals achieved in the longest
branch of the optimal solution. H: # reachable Markov
states.

Initial Execution # nodes # nodes

resource ε time created by AO* expanded by AO*

130 0.00 426.8 17684 14341

130 0.50 371.9 17570 14018

130 1.00 331.9 17486 13786

130 1.50 328.4 17462 13740

130 2.00 330.0 17462 13740

130 2.50 320.0 17417 13684

130 3.00 322.1 17417 13684

130 3.50 318.3 17404 13668

130 4.00 319.3 17404 13668

130 4.50 319.3 17404 13668

130 5.00 318.5 17404 13668

130 5.50 320.4 17404 13668

130 6.00 315.5 17356 13628

Table 2: Complexity of computing anε-optimal policy. The
optimal return for an initial resource of 130 is 30.

The next plateau until 44 depicts the region in which the tar-
get T1 is tested. However the remaining resources are still
not enough to move to a new location and get better rewards
there. In the region between 44 and 61 the rover decides to
move to L4 and test T4. Note that the location L2 is far-
ther from L4 and so the rover doesn’t attempt to move to L2
still. The next plateau corresponds to the region in which
the optimal strategy is to move to L2 and test both T2 and
T5, as enough resources for that are now available. The last
region (beyond 101) is in which three goals T1, T2 and T5
are tested and reward of 30 is obtained.

WhenHn is admissible, we can bound the error of the
current greedy graph by summinggn over fringe nodes. In
Table 2 we describe the time/value tradeoff we found for this
domain. On the one hand, we see that even a large compro-
mise in quality leads to no more than 25% reduction in time.
On the other hand, we see that much of this reduction is ob-
tained with a very small price (ǫ = 0.5). Additional experi-
ments are required to learn if this is a general phenomenon.

Conclusions
We presented a variant of the AO* algorithm that, to the best
of our knowledge, is the first algorithm to deal with: lim-
ited continuous resources, uncertainty, and oversubscription
planning. We developed a sophisticated reachability analy-
sis involving continuous variables that could be useful for
heuristic search algorithms at large. Our preliminary imple-
mentation of this algorithm shows very promising results on
a domain of practical importance. We are able to handle
problems with248 discrete states, as well as a continuous
component.

We are now implementing the full algorithm, on whose
performance we shall report in the final version. This al-
gorithm includes: (1) a full implementation of the tech-
niques described in (Fenget al. 2004); (2) a rover model
with two continuous variables; (3) a more informed heuris-
tic function. We will generate this heuristic function by
solving the original planning problem while assuming de-
terministic transitions for the continuous variables, i.e.,
Pr(x′|n,x, a, n′) ∈ {0, 1}. If we assume actions consumes
the minimal amount of each resource, we obtain an admis-
sible heuristic function. A (probably) more informative,
but inadmissible heuristic function is obtained by using the
mean resource consumption. Our central idea is to use the
same algorithmto solve both the relaxed and original prob-
lem and to use the value functionVn for the relaxed prob-
lem as the heuristic function. The relaxed problem is easier
to solve, (preliminary experiments show that it requires 10%
of the running time of the current algorithm) and unlike typi-
cal heuristic functions which are recomputed for each search
state, one expansion from the initial state should providesus
with values that can be used for most reachable nodes.

References
E. Altman. Constrained Markov Decision Processes.
Chapman and HALL/CRC, 1999.

J. Bresina, R. Dearden, N. Meuleau, S. Ramakrishnan,
D. Smith, and R. Washington. Planning under continuous
time and resource uncertainty: A challenge for AI. InPro-
ceedings of the Eighteenth Conference on Uncertainty in
Artificial Intelligence, pages 77–84, 2002.

Z. Feng, R. Dearden, N. Meuleau, and R. Washington. Dy-
namic programming for structured continuous Markov de-
cision problems. InProceedings of the Twentieth Confer-
ence on Uncertainty in Artificial Intelligence, pages 154–
161, 2004.

J.H. Friedman, J.L. Bentley, and R.A. Finkel. An al-
gorithm for finding best matches in logarithmic expected
time. ACM Trans. Mathematical Software, 3(3):209–226,
1977.

E. Hansen and S. Zilberstein. LAO*: A heuristic search
algorithm that finds solutions with loops.Artificial Intelli-
gence, 129:35–62, 2001.

N. Meuleau, R. Dearden, and R. Washington. Scaling up
decision theoretic planning to planetary rover problems. In
AAAI-04: Proceedings of the Workshop on Learning and
Planning in Markov Processes Advances and Challenges,

pages 66–71, Technical Report WS-04-08, AAAI Press,
Menlo Park, CA, 2004.
J. Pearl.Heuristics: Intelligent Search Strategies for Com-
puter Problem Solving. Addison-Wesley, 1984.
L. Pedersen, D. Smith, M. Deans, R. Sargent, C. Kunz,
D. Lees, and S.Rajagopalan. Mission planning and target
tracking for autonomous instrument placement. InSubmit-
ted to 2005 IEEE Aerospace Conference, 2005.
D. Smith. Choosing objectives in over-subscription plan-
ning. InProceedings of the Fourteenth International Con-
ference on Automated Planning and Scheduling, pages
393–401, 2004.
M. van den Briel, M.B. Do R. Sanchez and, and S. Kamb-
hampati. Effective approaches for partial satisfation (over-
subscription) planning. InProceedings of the Nineteenth
National Conference on Artificial Intelligence, pages 562–
569, 2004.
H.L.S. Younes and R.G. Simmons. Solving generalized
semi-Markov decision processes using continuous phase-
type distributions. InProceedings of the Nineteenth Na-
tional Conference on Artificial Intelligence, pages 742–
747, 2004.

